AD-A259 114 TR 92-5

T
‘ )

LINEAR ALGEBRA APPLIED TO PHYSICS
DETERMINING SMALL VIBRATIONS IN CONSERVATIVE

ELASTIC SYSTEMS

LT COL SHIRLEY J. HAMILTON
DTIC_

ELECTE
VEC 16 1992

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

LT e

92-31515

DEAN OF THE FACULTY
UNITED STATES AIR FORCE ACADEMY
COLORADO 80840




Technical Review by Major Delores J. Knipp
Department of Physics
USAF Academy, Colorado 80840

Technical Review by Captain Robert I. Lawconnell
Department of Mathematical Sciences
USAF Academy, Colorado 80840

Editorial Review by Lt Col Donald Anderson
Department of English
USAF Academy, Colorado 80840

This research report entitled "Linear Algebra Applied to Physics
Determining Small Vibrations in Conservative Elastic Systems" is
presented as a competent treatment of the subject, worthy of
publication. The United States Air Force Academy vouches for the
quality of the research, without necessarily endorsing the
opinions and conclusions of the author.

This report has been cleared for ther dissemination only as
d by the Dean of the Culty or
accordan ith AFR and DOD 5200.1-R.
authorized to accomplish an official government purpose.

This research report has been reviewed and approved for
publication by the sponsor agency.

( Ndsde

. . .
HN C. SOUDERS, Lt g#l, USAF Y MNovenber /99,2
irector of Resear ' - Dated




Linear Algebra Applied to Physics

Determining Small Vibrations in Conservative Elastic Systems

by
Lt Col Shirtey J. Hamilton, USAF

Department of Mathematical Sciences
United States Air Force Academy

Colorado Springs, Colorado 80840




cD [P, f . Approved
REPORT DOCUMENTATION PAGE s e 88
TRADITA® P LTI I L T OO ey B R ML T SAL 420 23 0 41 A 204 A0L Tny

Ll N AT RS MO RRR PE-LUS L WAV

isen he e L .t
AT IRe 3908 ARSTeR AT IADRTAS ING ey ARG TR SHeT Or L
SN O FRCLING TRy DL TEm 1D A APIATIIA =ea3Guer T 4 180vIces C

(287 30wty 20 0y

. : 2. T2tS Lette von
S hPeg)e(3r03-198) Leasnr ston. OC (2523 ‘

Anectar 2t At rma LIV JLE- RO ICH]

Ao RST A by Suete t 008 Lrnrgiln LA L (0723300 s s the D e 3 Aynagement 4P 2L 3G 2108w Crs Ry

5. AGENCQY USE ONLY (ledve Dlank) 2. REPQORT DATE 3. REPORT TYPL AND DATES COVERED
Final

4. TITLE &aND SUBTITLE S. FUNDING NUMBERS

Determining Small Vibrations in Conservative
Elastic Systems

6. AUTHOR(S)
Shirley J. Hamilton, Lieutenant Colonel, USAF

7. PERFCAMING ORGANIZATICH NAME(S) AND ADDRESS(ES) 8. PERFORMING GRGANIZATION

REPORT NUMBER

Department of Mathematical Sciences
United States Air Force Academy, Colorado 80840 USAFATR 92-5

9. SPONSCRING ACNITCRING AGENCY NAME({S] AND ADDRESS(ES) 10. SPONSORING - MONITCRING

AGENCY REPORT NUMBER

HQ USAF Academy
USAF Academy, CO 80840

11. SUPBLIMENTARY NOTES

123. DISTRIBUTICH AVAILABILITY STATEMENT 12b. CISTRIBUTION COCE
Unlimited "A"
13, A3STRALT (Maaemum 230 woras)

The purpose of this application was to create a supplement to an undergraduate
course in linear algebra. This application was drawn from the field physics and
shows how linear algebra is used to solve systems of second order linear
differential equations, which could be used to model small vibrations -in molecules.
This applications was designed so that an instructor of linear algebra could use it
either as an independent study project or as an integrated part of the course.

14, SUBJECT TERMS 15. NUMBER OF PAGES
124

16. PRICE CODE

17. SECLRITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION {20. LIMITATION OF ABSTRACT

OF REPORT . OF TH'S PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NN 7340-97-280-5500 Starcara corm J96 Rev 2-39)
Ormycroe@ Dy SNSE Mg 139-'9
99192




Contents of Application

Prerequisites
Section
1. Introdljction
2. Linear Spring-Mass Systems
3. A Closed Spring-Mass System
References
Appendix A: Review of Differential Equations

Appendix B: Solutions to Exercises

Page

NTIS CRA&!
OTIC TAS
Unami:ounced U
Justitication:

fatieesemetceccnest. st tnsarnans.

Accesion For d
ed
]

By ~~
Dict:ibutiond

Ausilebitiiy Codes
e R L e I SRS —
TR TR PN R
ANCh 2O

Dist Spucial

Al

N LAY e

- o S—

eeasd iLOED @,




Linear Algebra Applied to Physics

Determining Small Vibrations in Conservative Elastic Systems

Linear Algébr_'a Prerequisites: Being able use eigenvalues and
eigenvector to.diagonalize a symmetric matrix.

Prerequisite Knowledge in Physics: None.

Other Prerequisite Knowledge: A background in solving basic
differential equations would be helpful. However, Appendix A

contains this basic information.




Section 1 Introduction

In this study we will look at small vibrations. In particular.,
the small vibrations which we will study are in a system with an
equilibrium configuration which is a position where the system
remains at rest. An example of a system in its equilibrium
configuration is the simple pendulum as seen in Figure 1.1. The
simple pendulum consists of a ball attached to a taut wire, anchored
above, which can swing in the vertical plane. The weight of the

wire is negligible compared to the weight of the ball.

g

Figure 1.1

We say that a system has a stable equilibrium configuration if
after a small displacemént, the system tends to return to its
equilibrium configuration. There are different types of equilibrium
depending on the nature of the system. We are interested in the
type of equilibrium found in an elastic system. This is a system
which has the following two characteristics: 1) the system has a
stable equilibrium configuration and 2) a small displacement from

equilibrium creates forces which tend to restore the system to its
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stable equilibrium configuration. A displacement from equilibrium
is called strain and the force which restores the system to
equilibrium is called stress. Thus, stress is a function of strain.

The simple pendulum in Figure 1.1 is also an example of an elastic
system in its stable equilibrium configuration.

The total energy in an elastic system is composed of two types
of energy, kinetic and potential. We will begin by considering the
intuitive definitions of these terms and then discuss their formulas.
Kinetic energy is the energy a body possesses because it is in
motion. Before we can write the formula for kinetic energy, we
must be able to describe the system mathematically. In any system
there is a minimum number of coordinates that are required to fully
describe the configuration of the system. In general, the number of ‘
coordinates is equal to the number of “particles” in the system times
the dimension of the system. In the case of the simple pendulum,
the ball is the only particle in the system. The dimension of the
system is one, because the position of the ball can be described
using the angle made by the pendulum compared to the position of
the pendulum in its equilibrium configuration, as seen in Figtjre 1.1.
Therefore, the number of coordinates needed to describe the simple
pendulum is one. The velocity of the system can also be written in :
terms of the coordinates which describe the configuration of the
system. To be able to do this, we must specialize our notation. If n

coordinates (x [+ X9 o ,xn) are required to describe the system, then

each X; represents a Cartesian coordinate of one of the particles in ‘
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the system. For example, if we have two particles moving in the xy-
plane, which has dimension two, we will need four coordinates to

describe the system. The four coordinates (xl. X5, X3, x4) represent

the Cartesian coordinates of the particles in the system; that is, X

and X5 represent X- and y-coordinates of the first particle, and X3

and X4 represent the x- and y-coordinates of the second particle.

From this we see that the velocity of the system can be expressed in
terms of the velocity of each coordinate. The velocity vector for a
system with n coordinates can be written in terms of its velocity

components

The kinetic energy of the system is equal to the sum of one half the
square of each velocity component times the mass of the particle
which the coordinate describes. If we let T represent Kinetic ™

energy and m, the mass of the particle which is described using the

Cartesian coordinate X;. then our formula becomes




To have a conservative system, there must exist a function

whose partial derivative with respect to any coordinate, say X;. is

equal to the negative value of the force in the direction represented
by that coordinate. This function is called the potential energy
function. We can describe the relationship between this function

and the forces in the system by the equation

—Q—(potential energy function) =- (force in the xidirection),

ox.
1

From now on, we will assume that we are always in a conservative

system. In addition, if the potential energy function is not time

dependent ( ai[(potemial energy function) =0 ) then in our ‘

conservative elastic system the total energy of the system is
constant and is the sum of the Kinetic and potential energies. Also,
when the strain of the system is zero (the system is in its

equilibrium configuration, so xi=0 for all i), then the partial

derivative of the potential energy function with respect to any-
variable must equal zero. This statement can be interpreted in the
following two ways: 1) in the equilibrium configuration the potential
energy function is at a minimum and 2) the restoring forces are
equal in magnitude and of opposite sign to the forces that created
the displacement. This statement also tells us that the potential
energy function can not contain linear terms which have nonzero

constant coefficients in any of the X;. To see why this is true, let us ‘
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assume the potential energy function contains a nonzero linear term

X, (c is a nonzero constant). Then take the.partial derivative of it

with respect to X;- Setting X, equal to zero, we find the nonzero

constant ¢ is equal to zero, which is a contradiction. Therefore, we
conclude that ¢ must be zero and the potential energy function does

not contain a nonzero linear term CX;. Also, it does not matter if the

potential energy function has a constant term or not, because when

we differentiate the function with respect to any Xx; (i=1, 2, ..., n), the

constant becomes zero. Thus, if we write the potential energy
function in its Taylor series expansion, the non-constant part starts
with quadratic and terms of higher powers (which may also contain
a constant term). When we differentiate the potential energy

function with respect to X; (fori=1, 2, ..., n), we obtain a linear

combination of the variables X1 Xg, o X plus higher order or

mixed terms (for example X X

n or xlxzxn). If we ignore the higher

order terms, then the linear part which remains gives us the specific
relationship of stress to strain, which is known as Hooke's Law. In
general, Hooke's Law states that “stress is a linear transformation
operating on strain.” Intuitively, we would say, restoring forces are
linearly proportional to the displacement of the mass from
equilibrium. If the non-constant potential energy function starts

with a power greater than two, it is possible (0 use an approximation
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higher power terms in the partial derivative of the potential energy

to find the relationship between stress and strain in which the still

function have been ignored. However, this is no longer a linear

function. .
We will consider two approaches to the formulation of a

differential equation whizh models a system. The first approach is -

developed using Newton's second and third laws of motion, which

are stated below for convenience.

Second Law - The mass of the body times the acceleration of
the body is equal to the force acting on the
body.
Third Law For every action there is an opposite and equal '
reaction.
From these laws we derive the differential equation which models a

conservative elastic system

dz(displacment)

mass x =restoring force
2
dt
or
dz(strain)
(1.1) . mass x ————— = stress.
dt?
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In the second approach, instead of using the direct application
of Newton's laws, we will consider a method developed by Joseph
Lagrange, a French mathematician. This very elegant and
sophisticated method can be applied to systems which are more
general than the ones we are considering here. Since our system is
conservative and elastic, the energy is constant and equal to the sum
of the kinetic and potential energies. If we let V represent potential
energy and E represent the total energy in an n coordinate system,

then we have

E=T+V=

N|—
u Mo
3

Q.

%I x

N—”’
+
<

To make it easier to express this differential equation, we will

introduce a type of notation you may not have used before. The

derivative ((11_)[( will be written as X, where the single dot above the

variable x indicates that one derivative of x, with respect to time,
has been taken. This idea can be extended so that X indicates that
two derivatives of X with respect to time have been taken. This
notation is used to rewrite the equation for total energy.
n
(1.2) _ _1 .2

E=T+V=5 igimi X, +V
We wish to derive the equations of motion which can be used to

model conservative elastic systems. Our first step is to find the
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partial derivative of Equation (1.2) with respect to each of the
coordinates. Since the procedure is the same when taking the
partial derivative with respect to each coordinate, we will only find
the partial derivative of the function for total energy (a constant)

with respect to the X; th coordinate. We obtain

AT . 3V
0=3x *ox.
H 1
or
vV _ AT
(1.3) -8v._ T

Since the mass of each particle is known, the partial derivative of

the Kinetic energy with respect to the coordinate X; is

oT
E)xi

ox .

! ax. ax. ok,
=Emi 2Xi— =mi—at—' W=m.—=m.x.

Substituting this into Equation (1.3). we obtain the restoring force of

the xi coordinate.

(1.4) -==—=mX. .
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Since the kinetic energy is expressed in terms of )’(i, we can find

aT
ox. .
1
T _ 1 [ .]_ :
xSz ™LX =M

We now differentiate this equation with respect to time to obtain

We see that the right side of this equation is the same as the right
side of Equation (1.4). Equating the two, we obtain the equation of
motion for the X; th coordinate.

d[aT J_._3aVv
dt axi axi

Therefore, the equations of motion which model our conservative

elastic system with n coordinates are

(1.5) Q_[BT]=_ aV _q_[aT J=_ av__wi[ aT ]=_ aV
de | ax, .axl de| ax, Ix, dt | 9x, IX,
We will model the simple pendulum of Figure 1.1 using both

the method which applies Newton's laws directly and the equations
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of motion formulated by Lagrange. Since we are only interested in
small vibrations of a system, let us discuss the conditions under
which the vibrations in the pendulum system remain small. In a
conservative elastic system the total energy of the system is
constant and is the sum of the kinetic and potential energies. The
potential energy of the pendulum system is determined by the
displacement of the ball from its equilibrium position. Imagine the
pendulum in Figure 1.1 being placed very close to its equiiibri_um

position and released as in Figure 1.2.

pzz

Equilibrium
position

Figure 1.2

Since the potential energy is small to start with (the displacement
from equilibrium is small) and we are in a conservative systerﬁ, we
know that it will remain small. Because the displacement stays
small, the angle 8 will always be small. Thus, the vibrations of this
system can only be small vibrations.

Let us model the simple pendulum system using the method
which applies Newton's laws directly. To keep this example simple
we will only consider the positive region which is to the right of the

equilibrium configuration in Figure 1.3(a). Let L represent the
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length of the pendulum, m be the mass of the ball at the end of the
pendulum, 0 the angle the pendulum makes with respect to the
equilibrium configuration, and s represent the length of the arc the
ball travels. The force pulling the ball down is the mass of the ball

times the acceleration due to gravity g.

g g/ plr

ig

i

Equilibrium Equilibrium; ®
position i position E

o m 1 m
Qs o
Restoring
force
mg mg mg
(a) (b) (c)
Figure 1.3

We will apply Newton's laws of motion to model the pendulum
system by using Equation (1.1). Thus, we need to determine the
stress and the strain of the system. Since stress or restoring force is
the force trying to return the ball to its equilibrium configuration,
we must resolve the force on the ball (mg) into its component forces.
Figure 1.3(b) shows the restoring force is the component of force on

opposite
hypotenuse *

the ball along the arc length. Since sin@= the

magnitude of the restoring force is mgsin@® as seen in Figure 1.3(c).

We will need a minus sign to indicate that the restoring force is




. @

opposite in direction to the force which originally moved the ball
from its equilibrium configuration. Thus, the restoring force or

stress is equal to — mgsin@®. The strain is the displacement of the

ball from the equilibrium position. This distance is the arc length s, .

which can also be described using the equation s=L6. Substituting
these values for stress and strain into equatinn (1.1) gives
2

m -d—z[L 9]=- mg sin®
dt )

Taking the second derivative of L8 with respect to time, this

equation becomes

mL6=-mgsin®

Simplifying and moving all terms to the Ieft side of the equation, we
get the second order differential equation that models our

conservative elastic system.

v§+%sin0=0 .

We now model the simple pendulum system using the

equations of motion formulated by Lagrange. Since 0 is the only
coordinate needed to describe the system, we will only need to use

one of the equations of mation found in Equation (1.5).




15

d iT_]=_a_V
dt| 90 0

Thus, we need to find both the kinetic energy and potential energy
of the system. The kinetic energy is one half the mass of the ball
times the square of the velocity. The velocity is the first derivative

of the distance with respect to time.

velocity = -aq[- [distance] = % [Le] =L 3—? =L@

Therefore, the equation describing the Kinetic energy becomes

Since potential energy is the energy needed to restore the system (o
equilibrium, it is equal to weight of the ball (mass of the ball times

the acceleration due to gravity g) times the height of thé bail-above
the reference point. Since the ball is below the reference point, V is

adjacent
hypotenuse '

negative. Using the fact that cos0 = we determine the

distance of the ball below the reference point to be Lcos0 as seen in

Figure | 4.




Figure 1.4

Thus, the potential energy is

V = -mgL cos®.

Now, we substitute the appropriate partial derivatives of the kinetic

and potential energy equations into the equation of motion. First,

we find the left side of the equation of motion by differentiating the

kinetic energy equation with respect to 6.

aT

6

=-2!-mL2(29)=mLzé

Then differentiating with respect to time, we obtain
d [ oT 2 -
a5 ]-m e

Second, the right side of the equation of motion is

...-a—v-__[_mg Lg'(ia(-)esi)]z—[—mg L(—Slne)]

-m g Lsin®
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Equating the two sides, the equation of motion becomes
2z .
mL 8=-m g Lsin®

Simplifying and moving all terms to the left side of the equation, we
obtain the second order differential equation that models our
conservative elastic system. As expected, this is the same equation

which we found by applying Newton's laws.
(1.6) 6+2 sing=0
L

Let us pause for a moment and discuss the relationship
between the potential energy function and the component of force
tangent to the path the ball travels (that is, in the direction of arc
length). Recall that in a conservative system, the partial derivative

of the potential energy function ‘Wwith respect to any direction, gives
the negative of the force in that direction. That is, %lsl-=— F, Where
FS is the force in the dfréction of the arc length s. First, we need to
write the potential energy function in terms of arc length s. We will

use the fact that s=L9.

=-mgL cos(Ts_-)

We continue by differentiating this with respect to s to obtain




s @

Thus, F_=-<—=-mgsin0 is the restoring force, since the simple

pendulum is described using only one coordinate. (Recall the
discussion following Figure 1.3.)

So far we have found the second order differential equation
which models the simple pendulum system using two different
methods. Now, we are ready to consider how Equation (1.6) can be
solved. Since this equation involves sin 9, we know it is a nonlinear

differential equation. (See Appendix A for definition.) One

technique used to find the exact solution (if that is passible) of a .
second order nonlinear differential equation is to first reduce it to a

first order differential equation. Recall that, the equation of motion |
was derived from Equation (1.7). Since Equation (1.6) was found by

using the equation of motion, we can use Equation (1.7) as our first

order differential equation.

2
(1.7) E=T+V=%mL2(g—e) -mglcos®
t
de :
We begin by _solving for the squared derivative (Ft') in Equation

(1.7).
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2
(1.8) (de) _2(E + mgL cos6)

dt 2

dt mL

Let us pause for a moment to assure ourselves that we could
legitimately use Equation (1.7) as our first order differential
equation. We will differentiate Equation (1.8) with respect to time

and see that we get Equation (1.6).

2()6=—25[0+mgL(-ésin9)]
mL

When simplified, we see this is Equation (1.6).

6 %sin@:O

Taking the square root of both sides of Equation (1.8) and recalling
that we are only considering the positive region to the right of the

equilibrium configuration, we obtain

d_é_jZ(E+m g Lcose)
dt mL2

One way to solve the differential equation above for t, is to isolate dt

on one side of the equation and d0 on the other. This technique is

sometimes called separation of variables.
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2
dt=f mL
2(E+m gLcose)

Integrating both sides of the above equation, we obtain

2
(= ‘/ mL
J 2(E+mgL cos6)

This is an elliptic integral which can not be expressed in terms of

elementary functions. Thus, to get any information about the
solution to Equation (1.6), we must resort to numerical
approximations or use the fact that we are dealing with a system
involving small vibrations. We also note that the question of finding
the inverse function 8 =0(t) of the function above is, at best, a
numerical approximation problem and is not even useful in
predicting values of @ at a given time ¢, since we are dealing with
small vibrations. As a point of interest, if we were not considering
small vibrations, then the function t=t(0) and its inverse function
8 =06(t) would be the only tools with which we could obtain
information about the system.

Using the fact that we are dealing only with small vibrations,
we consider the factor sin®, which makes Equation (1.6) a nonlinear

differential equation. We can write sin@ as a Taylor series

expanded about zero.

n
. - (=D 2n + | 0
sing= 3, 2n+ 1) = 3! S!

n=0
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Since we are considering only small values of 6, the terms in the
expansion above which contain powers of 8 are, in practice, ignored
(a very small number raised to a power greater than one becomes
even smaller). Any time terms are ignored we expect a certain
amount of error. To determine the exact amount of error would
require the same type of calculation that it would take to solve the
original equation. However, since we are considering only'small
vibrations, we are assured the amount of error will not affect the
resulting solution. Thus, using the Taylor series expansion for sin 6
we see that sin® can be replaced by 0, for small values of 8. This
substitution is only valid when we are dealing with small vibrations.

' Using this substitution, the second order differential equation
(Equation (1.6) ) becomes

é+'lgf 9=0

This is a second order linear differential equation whose solution is
found using basic techniques from differential equations. (Basic

solution techniques are found in Appendix A.) We obtain
- 8 in[ [& )
e-clcos( B t)+czsm( ¢ |

In summary, we have investigated two different ways to

' model a conservative elastic system. One method applies Newton's
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second and third laws directly to the system to create the
differential equation. The other method uses a technique developed
by Lagrange, which was much easier to generalize and could be
applied to many different types of systems. The derived equations
of motion, greatly simplify the amount of work necessary to model a
conservative elastic system. From these techniques, we found the
second order nonlinear differential equation that models the simple
pendulum. Since we considered only small vibrations, we found
that the equation could be represented by a second order linear

differential equation’ which has an elementary solution.

Section 2 Linear Spring-Mass Systems

In the last section we considered a system which only needed
one coordinate to completely describe the system. We now look at
higher dimensional systems, such as spring-mass systems in which
more than one coordinate is required to specify the state of the
system. A spring-mass system is a conservative elastic system with
a stable equilibrium position occurring when all of the coordinates
are set equal to zero. To become familiar with spring-mass systéms.
we will first consider the one dimensional case. Figure 2.1 shows
the system in its equilibrium configuration (the spring is not being
stretched or compressed) where m is the mass of the block and L is
the natural length of the spring. We are considering the spring-

mass system moving along a horizontal track rather than hanging
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vertically so that we do not have the added complication of

describing how gravity affects the system.

N ——Jlim

S —

L -

Figure 2.1

To determine the number of coordinates we need to describe this
system, recall the formula given in Section 1. (The number of
coordinates = (numt;er of particles) times (dimension of the
system). ) The only particle in the system is the block and since the
‘ block is moving along a horizontal track, the dimension of the
system is one. Thus, we need only one coordinate X, to describe the
system. Imagine the block being moved to the right causing the
spring to be stretched x units. This is shown in

Figure 2.2.

7|/é
B8

Figure 2.2

To describe the energy of this system we again need to find both |

the kinetic energy and potential energy. The kinetic energy is one

half the mass of the block times the velocity squared. The equation

. describing the kinetic energy is

[
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2

L (oL
T-—2-m(dt)_2mx.

The energy stored in the spring or the potential energy of the spring
is one half the spring constant times the square of the distance that
the spring is stretched. From the laws of physics we know that the
external force acting on the spring is proportional to the increase in
length of the spring. We call the constant of proportionality that
allows us to write this relationship as an equation, the spring
constant or the stiffness of the spring and each spring has its own
specific spring constant. If we let K represent the spring consiant
and x the displac'ement of the spring from equilibrium, then the

equation for potential energy is

{ 2
- 2 k X )
Since x is the only coordinate needed to describe the system, we will
only need to use one of the equations of motion found in Equation
(1.5).

_d_[aT]_ v

dt Lox ]~ ~ ox

To find the left side, we first differentiate the kinetic energy

function with respect to X.
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Now differentiate this equation with respect to time.

4 a0 5
dt[a)k m X

To find the right side of the equation of motion, we differentiate the

potential energy function with respect to x.

oV _ _
“ X = K x

Equating these two, the equation of motion becomes

mX=-Kk X.

Simplifying and rearranging terms, the differential equation which

models this system is

. kK oo
x+—n—1-x-0.

This is a second aorder linear differential equation whose solution is
found using basic techniques from differential equations. (See
Appendix A.) Note, the similarity between this differential equation

and the one that models the simple pendulum.

= X i X
x-clcos( o t)+c25m( = t)
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To be able to model higher dimensional spring-mass systems,
we need to study the theory which describes the energy of the
system in general terms. In the one dimensional spring-mass
system there was only one coordinate which we labeled as x and it
was expressed in terms of time. The kinetic energy of the system
was described using the first derivative of this coordinate with
respect to time, while the potential energy was expressed in terms
of the coordinate. If we are working with a higher dimen'siona.l

system which has n coordinates, say X Xgu s X, then the kinetic

energy will be described using the first derivative with respect to
time of each of the coordinates and the potential energy will be

expressed in terms of these n coordinates. In general we have

Kinetic E =iy (dxi)_ln .2
inetic Energy -2i=lmi T -ziglmixi

S
Potential Energy V= Z Vi where Vi is the potential

energy of each spring and

s is the number of springs.

Since stable equilibrium occurs when X =X2= ... =X4=0, we may
assume that the energy of the system is at a minimum in stable
equilibrium. This means the derivative with respect to any variable

must be zero when that variable equals zero. Thus, if we have a
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function which we wish to expand using its Taylor's series
expansion, as we did with sin @ in Section |, the expansion can not
have a nonzero linear term. For if it did and we took the derivative
of it, we would end up with a nonzero constant. Subsequently,
when all variables are set equal to zero, the constant would remain,
indicating that we do not have stable equilibrium, a contradiction.
Therefore, the Taylor series expansion for the potential energy does
not have linear terms. However, this expansion may have constant
terms. B

Let us return to the spring-mass system. Figure 2.3 shows a
system in equilibrium with two blocks having the same mass m and
three springs po_ssessing the same length and spring constant. To
determine the number of coordinates néeded to describe this
system, we need to recall the formula given in Section 1. (The
number of coordinates = (number of particles) times (dimension of
system). ) The two particles in the system are the two blocks and
since both blocks are moving along a horizontal track, the dimension

of the system is one. Thus, we will need two coordinates, Xq and X,,

to describe the system.

Spring 1 m Spring 2 m Spring 3
s\\—MMA. ! AN N ! “MM—-%
| L, : L, { Ly :

Figure 2.3
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Imagine the two masses are moved to the right causing the first two
springs to stretch by different amounts and causing the third spring

to be compressed. This is depicted in Figure 2.4.

m m
- AAAAAAY -— A —
%~ F%,1

Figure 2.4

A\

%

Now we determine the second order differential equation that
models this system. Thus, we need to find the kinetic energy -and
the potential energy of the system. The equation below describes 1

|
the kinetic energy of the system shown in Figure 2.4. ‘

1[ (dleZ (dxzﬂ ot s
=5 1M™ar ) ™o =5m[x1+xz]

The potential energy of the system is the sum of the potential
energies of each spring. Spring 1 is stretched from its equilibrium

position by the amount X|. SO the potential energy for spring 1 is

\' K x ¥ Spring 2 is stretched from its equilibrium position by

=4
1~ 2
2

the amount X5-X{. SO that V2= %k(xz-x l) is the potential energy

for spring 2. Spring 3 is compressed from its equilibrium position




by the amount Xy. Thus, the potential energy for spring 3 is
V3= szxzz. Therefore, the potential energy of the system is
3 2 2, 2 2
Z % l+(x2--xl) +X -% [2x|—2xlx2+2x2]

Since this system is described using two variables, X, and X5, Our

two equations of motion are

d [aT IV d [ T AV
glol (___0dV d g =
T; [axl] ax, an dt [ axz] 2%,

First, we determine the left side of each equation of motion by

differentiating the kinetic energy with respect to )'(l and >'(2.

0 1 . .
a—x.l=-2-m[2Xl+0]=le
T 1

—ag 5m[0+2x2] mx

Then, differentiating each of these equations with respect to time,

we have

29
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d [oT dr o1 =
a0 ——a),(l]ra{-[mxl]-mxl
d [T 1_dr.v 1 ms
dat axz]‘dt[’“"z]"""z

To determine the right side of each equation of motion, we

differentiate the potential energy with respect to X and X5

aV

|
a—)<l——5k[4xl— 2x2+0]=k[- 2x|+x2]

A% [
——a—x;=-7 k[0-2xl+ 4xz'|=k[xl—2x2]

Substituting this information into the equations of motion, we obtain

d[oT ]___dV
dt axl axl

which becomes

m)"<|=k[—2xl+x2] or il=%[—2xl+x2]
and

g_[ oT ]:- oV .
dt ax2 ax2

which becomes
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We now have a system of second order differential equations which
can be written as the following matrix equation, where A is a

symmelric matrix.

g X X -
x—[)"( J'm( 1 =2 (xz]-mAx

2
Since A is a symmetric matrix, all of its eigenvalues are real and A is

diagonalizablé. We begin the determination of the eigenvalues of

the matrix A by

1

) ez 3G D .

det(A - Al = det ( - 21“"

If we set det(A -Al) equal to zero and solve for A, we find the
eigenvalues are A=-3 and A=-1. Since A is diagonalizable there exists

-1
an invertible (orthogonal) matrix P such that P AP = D. The matrix

D is the diagonal matrix whose entries along the main diagonal
consist of the eigenvalues of A and the columns of P are
corresponding eigenvectors associated with these eigenvalues. To
find P we need to find an eigenvector associated with A=-3 and one

associated with A=-1. For A=-3 we have the following matrix

equation.

(3 () = e

2
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If we let Xy = 1, then Xy = -1, and it follows that an eigenvector

1
associated with the eigenvalue A=-3 is ( ~1 ) To find an

eigenvector associated with A=-1, we use the following matrix

equation.
(-2+1 1 ) X _(—lv 1) X, _(o) © ¥ = x
I =2+1 )] x, I -1J){x,] \o 1= 72
If we let x| = I, thén X5 = . Thus, an eigenvector associated with

1
the eigenvalue A=-1 is ( 1 ) Therefore, these two eigenvectors are

the columns of the invertible matrix P=( : : )

Recall that our goal is to solve the second order differential
2 K 2
equation X =~ A X. If we multiply both sides of this equation by

1 -1
P and use the identity PP = l2, the 2x 2 identity matrix, we

obtain

a2 - - 4 |- _ -
20 pP'x=p'Kax=Xp 'A(PP ')x:%(p 'AP)(P 'x).

We want to get Equation (2.1) into a simpler form to make it easier
. . A (4 . : .
to solve. To do this we willlet U=P ~ X. This matrix equation can
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: : -1
be easily differentiated with respect to time, since P is a constant
- (>
matrix. The first derivative with respecttotimeis U=P X.
Since Equation (2.1) is a second order differential equation, taking a
- -
. . . . . . -1 3
second derivative with respect to time yields U=P X. We

-
introduce the vector variable U into Equation (2.1) by substituting
- -

U= P_l X into the left side of this equation. Then, if we substitute

- - - ‘
P lAP -Dand U=P' X into the right side, Equation (2.1) becomes

2 -
U= %D U. This system of second order differential equations is

e -

easier to solve than X = % A X.

Exercise 2.1

> (Q u
i jl_k{-3 O L l_Kno .
Show why the system U—[ﬁ ]-ﬁ( )( ]'Tﬁ'DU is

2 0 -1 u,
I X _ X -
easier to solve than X = ,,' =L( 2 l ) iz LA X.
X, |. m 1 -2 )| x m
2 2
_)
Recall that we are trying to solve for the vector X.
- -1 e d - - .
Rearranging U=P X, we get X =P U, which tells us that instead
- -
of finding X we need only find P U. Since we already know the

—)
matrix P, we must find the vector U. If we multiply both sides of

I -
the matrix equation U = %D U by the matrix P, we get




1w @

- - Y -
. Rewriting the left side of P U = %P D U. using the

.o k
PU=PDU

notation where P(l) represents the i th column (i =1 and 2) of the
matrix P, we obtain
B¢ a
PU:(P(I) Pm)[g' )=P“)GI+P(2)0, )
> 2

-
.. e 4
Rewriting the right side of P U = kap D U. we obtain

K "_L[ (D ¥) ]
mPDU-m P ‘/\.lul+P lzuz.
q ®

.. -
Thus PU = %—P D U can be written as

Wy . p?g =-r%-[P“)l

2)
| 2 u +P )‘zuj.

|
. ) . ) . ) K
We can simplify this equation by multiplying through by ?n-'

gathering terms and moving all terms to the left side.

. kg ][(2)- _kp® ]_"
[P u, mP llul+P u2 mP lzuz-o

1 2
Factoring out P( ) and P( ). we have

[nl-%xlUI]P"’+[az-ﬁx2u2]P‘2’=3_ ®
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Since the columns of P are eigenvectors of A which correspond to
distinct eigenvalues, we know they are linearly independent (in fact
they are orthogonal). The equation produces a finite linear
combination of linearly independent vectors which cquals zero, thus

2
the coefficients of P( b and P( ) must be zero. If we set each of the

coefficients in the equation above equal to zero, we obtain

. K _ K —
a —ﬁi\. u =0 and a —ml u —0'

These are both second order linear differential equations which can

be solved using basic techniques. (See Appendix A.) If we let

ro=- 'rlei' where i=1, 2, then these equations become

—>
Using the following formulas, we can solve for the vector U. (Note:

To determine whether r; iS zero, negative or positive, substitute A‘i

. _ Kk
into ro=- ﬁxi.)
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Ifr. =0, thenu =c.t+c,.
1 i il i2
Fe T
Ifr.<0, thenu =c. e +cC €
i i il i2
If r. >0, then ui=c“cos( /ri t)+cizsm( /r'i t).
The solution to the original system of differential equations
o Kk = '
=1 A X is found by substituting the values for both the matrix P

- - -
and the vector U into the equation X=P U.

Exercise 2.2

Using the above technique, solve the following system of differential

= > (% P
equations X=——A X. Where X=| .' | A= and
m %, 1 -2

- X
X =[ xl ) That is, find the two equations which describe x| and Xx».
2 .

Exercise 2.3
Given a horizontal spring-mass system similar to Figure 2.3 with n
blocks, the following equations would express the kinetic and

potential energies of the system.




Kinetic Energy

Potential Energy

. 37
T=% m 3. xl2
i=1
\ =—12-k[b”xf+b22x§+...+bnnxi
+2bl2x|x2+2bl3xlx3+ ot 2bmxlxn
+2b23x2x3+2b24x2x4+ ...+2b2nx2xn

+2b, . x.x. ,+..+2b, x.Xx
L+l i i+l i.n it n

+2b 2b

X X + X X
n-2,n-1" n-2" n-I n-2n n-2"n

+2b X X ]
n-L.n n-1 n

Use the equations of motion to find the system of differential

equations which model the spring-mass system with n blocks. To
solve this system, generalize the procedure used to solve the system

of differential equations which model the spring-mass system with

two blocks. (Hint: Some of the material that has been discussed can

be used directly, while other portions will need some modifications.)

Another aspect of the spring-mass system that we want to

consider is the oscillations of the system as a whole. From our work
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above, we know the solution to the second order differential

o Kk 2 - -
equation X = o A X can be found by using X =P U. In Exercise

2.2 we found
Xl = UI+U2 aﬂd X2 = —ul+U2.

This is a system of two linear equations which we can solve for u,

and u,. Thus we have the equations

(2.2) u,=—> and u,=——>—

each of which gives a relationship between the variables X| and X5.

It is important to note that we could have found these equations
_)

. e _ .
directly from the matrix equation U=P : X, but this would involve

-1
finding P . Using Figure 2.5, we can recall the configuration of

this spring-mass system. Since the springs were stretched by -
differing amounts, a different frequency (the number of vibrations

per unit time) is associated with each of the variables X and X5.
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%, %,
Frequency 1 Frequency 2
Figure 2.5

This spring-mass system has two separate modes in which it
vibrates.
X =X X, =X

, _o1 T2 0 < 1 "2
In the first mode u| = 5 and U, 0. Since 5

represents the how the distance between the two blocks is
changing, the first mode of vibration describes how the distance

between the two blocks is changing. For instance if X is greater
than Xy then the change in distance between the blocks is smaller

than the distance between the blocks when the spring-mass system

is in equilibrium. However, if X is greater than x,. then the change

in distance between the blocks is larger than the distance between
the blocks when the spring-mass system is in equilibrium. Thus,
the oscillation of the system in this mode is described by how the
distance between the two blocks is changing which corresponds to

the frequency associated with the second eigenvalue 12. To

visualize this, consider the series of “snapshots” of the spring-mass
system in motion in Figure 2.6, where the banner is made of an

elastic material and indicates the distance between the two blocks
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in the system. When this system vibrates, we would see the banner

contracting and stretching with a frequency associated with lz.

|
i
|
gl
|
\

\
N

—— A ——

%
:
i

Y/
»

%
ﬂ
i

| y,
Q——wvv» i AANANAN, ! ‘\/\/W\o_%
Figure 2.6
xI +X X +x2
In the second mode u‘=0 and u2= — Since ——2—'

represents how the center of mass of the system has changed, the
second mode of vibrations describes the displacement of the center
of gravity. Thus the oscillation of the system in this mode is where
the center of mass of the system vibrates at the frequency

associated with the first eigenvalue ll. To visualize this, consider

the series of diagrams in Figure 2.7, where the flag indicates the
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center of mass of the system. When this system vibrates, we see the

flag moving back and forth with a frequency associated with ll.

This is indicated by the following series of “snapshots” of the spring-

mass system in motion.

N—— - ! ‘WE B— %/

%

2
N
* |

VT

§

i
B
|
.
||

Figure 2.7

Exercise 2.4

Suppose the spring-mass system we have been studying was lying
free in the xy-plane, that is, the ends of the springs are not

anchored. Figure 2.8 can help us visualize this.
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y-axis

——AAAAA . AAAAA - AAAAA,

X-axis

Figure 2.8

Using the information we have gained by studying the stationary
spring-mass system, describe the motion (including the vibrations)
that can occur. Note, there is no need to find the frequencies to
complete this exercise. (Hint: consider other types of motion,

besides vibrations.)

Exercise 2.5

(a) Determine the system of differential equations that model the
motions of the spring-mass system given in Figure 2.9.

(b) Solve the system of differential equations.

(c) Describe the possible configurations in which it vibrates.

Sping 1 m Spring2 m Spring3 m  Spring 4

\ AAAAA . NAAAAY NAAAN NAAAA
: L, | L, % L, - L,
Figure 2.9
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Exercise 2.6
Suppose the spring-mass system of Exercise 2.5 was lying free in
the xy-plane, that is, the ends of the springs are not anchored.
Describe the motion (including vibrations) that can occur for this

system. Compare these motions with the motions found in Exercise

2.4.

Section 3 A Closed Spring-Mass System

In this section we will discuss how to mathematically model
the spring-mass system in Figure 3.1 énd determine the possible
motions of the system. This system lies in the xy-plane with none of
its blocks anchored. The mass of each of the three blocks is the
same and is denoted by m. L is the length of each spring when the
system is in its equilibrium configuration and Kk is the spring

constant, which 1s the same for each spring.
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Figure 3.1

This system is in stable equilibrium when the displacements
x]=yl=x2=y2=x3=y3=0. To find the energy of the system in Figure

3.1 we need to find the kinetic and potential energies of the system.
Recall that the kinetic energy of the system is one half the mass
times the sum of the square of the first derivative of each of the six

variables with respect to time. Thus, the kinetic energy is
T—-l- (x +x2+x2+ (+ v+ )

Finding the potential energy requires more work. Since the
potential energy of the system is the sum of the potential energies of
the springs, we first need to find the potential energy of each spring.
We will consider each side of the triangle individually.

The first side that we look at is given in Figure 3.2.
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r2 (xz'izg‘“yz]

where d= Jf(-%— +x1] - X, ]2"'[5’1' [.“_é._3..L+yz]]

n (%”‘1' VJ

X

Figure 3.2

The potential energy of this spring is one half the spring constant k
times the square of the distance that the spring is stretched. If we
let d represent the length of the spring after it has been stretched,

then the displacement of the spring from its equilibrium position
(the distance that the spring is stretched) is ld—LI. Expressing the

potential energy for the sprihg in terms of |d-L|, we have

| 2
v, 7kld LI

where the subscript 12 of V indicates that we are finding the

potential energy of the spring that is stretched between the block




o @

with coordinates X, andy, to the block with coordinates X5 and y,.
Now, we want to rewrite V 12 using the variables X1 Y X, and Yo

To do this, we must first simplify the expression for the distance d.

L
2

={—"}- L2+L(x| —x2)+(xl-x2)2+%1—2-\/_31(y. 'Yz)+(y|‘yz)2}

4
2
2

:L{.+LL[(x,-xz)-«s(y,--yz)]%[(x.-xJ +(y.-y.z)2”

L

We want to rewrite the quantity

RETTARVE A Y (A |
o
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using its Taylor series expansion. The terms of higher powers have

been grouped together for convenience.

d=L{l+%[(x'-x2)—l?/§(yl—yz)] |

T +terms of higher powers}

Exercise 3.1

Verify that the expression above is indeed the Taylor series

expansion for the quantity I‘(%) (shown below). Hint: write f(%)

in its Taylor series expanded about zero. Recall that L is the length
of the spring in equilibrium, thus L=0. (Hint: To make it easier to

1
take the derivative of f(—l-), let r= '['_'and find the derivative of f(r).)

L

The expression preceding Exercise 3.1 can be simplified by
multiplying through by L. and then moving L to the left side. The

resulting quantity is what we want.




s @

d- L=%[(x - xz)-ﬁ(yl— yz)]+ terms of higher powers

This quantity can now be substituted into the formula for the

potential energy V 12

2
T‘[(xl—xz)-‘\/g(yl—y,z)+[erms of higherpowers] }

=Xk
~2

—P— ——

?l[(xl —xz)-ﬁ(yl —y2)]2+ terms of higher powers}

=K
2

Recall from an earlier discussion that the Taylor series expansion for
potential energy can not have any nonzero linear terms because we
are in a system which has an equilibrium configuration. Also, we
are only considering small vibrations so we ignore the terms of

higher powers. The formula for potential energy V [2 is
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Exercise 3.2

Using Figure 3.3, find V23. Hint: the procedure is similar to the one

used to find V12‘

Figure 3.3
Exercise 3.3
Using Figure 3.4, find V 13
73 | 7
%3 %
Figure 3.4

As stated before, the potential energy of the system is the sum of the

‘ potential energy of each spring. Thus we have
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V=Vi5*Vy3+V3

3 3 V3 V3 V3
2

TAXXTRY YTV T Ty XYt

S SRUE:

T XY T T XY 3t T XY

We recall that the kinetic energy is given by

T=dm(B+2+3l+524 92 49%)
=7  FXp ¥ X3+ Y, +Y,+Y,)

Since this system requires six coordinates to fully describe it, we

know we must have six equations of motion. These are

d [T ]=_ aV [aT ]=_ oV i[ oT ]=_ oV
dt i axl E)xl ax2 ax2 ‘(." ax3. . ax3
d [ T ]=_ oV [aT ]=- oV and _d__[ oT ]=_ oV
dt i ax4 ax4 ax5 ax5 dt ax6 : ax6

First, we find the left side of each equation of motion, then find the
right side and equate the two. Thus, we have the following six

equaticns.



51

This system of six equations can be written as a matrix equation. In

.. ) . k
order to eliminate fractions from the matrix, we factor 5— out of

4m
K
each equation, which results in am being factored out of the
coefficient matrix A.
(%) fx )
| (-5 1 4 /3 -3 o) !
X X
2 1 =2 1 /3 0 /3 2
X3 - _k_- 4 1 -5 0 ‘\/3 -*\/§ x3 _ LA ;(’
V., | 4mf v3 /3 0o 3 3 oy | 4m
7, -3 0 43 3 -6 3 Y,
y L 0 V3 /3 0 3 -3y
\ 73 ) \ 73 )
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The generalized theory developed in Exercise 2.3 describes the
situation when n=6. Thus, we begin by finding the eigenvalues and
eigenvectors of the symmetric matrix A. One way we could proceed
would be to use the sixth degree characteristic polynomial to find
the eigenvalues directly. However, this would require finding the
determinant of a 6 x 6 matrix. Using the cofactor expansion method
would require 6! or 720 calculations to find the value of the
determinant. We could also use a éomputer program. For example,
the user's guide to the computer program LINPACK (Dongarra,
Bunch and Stewart, 1979) describes how the program can be used
to approximate the eigenvalues and eigenvectors of the
characteristic polynomial. This would be quicker, but would not
give us any insight into the possible tybes of vibrations of the
system. Instead, let us consider the symmetric matriXx A and see if
we can use our knowledge of matrices to reduce the amount of
work required to find the eigenvalues. In general, the coefficient
matrix which represents an application is much larger thana 6 x 6
matrix, but is still a symmetric matrix. The approach used by
applied mathematicians working on large systems would be to: 1)
manually work through the theory of a smaller, related, and less
complicated system, 2) enlarge the system and use a computer to
find the eigenvalues and eigenvectors, 3) interpret the physical
meaning of the information from the computer by comparing the
results with the results found in step 1, and finally, 4) change the
model so that it reflects the desired system as closely as possible.

For example, in a more complicated system not all of the blocks may
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be of the same mass, nor the springs be of the same length or have

the same spring constant. Step | may be to consider a system

where all of the blocks have the same mass, the springs are all of the

same length, and each spring has the same spring constant.

Therefore, we will start our work by finding the determinant

of the matrix A-Al

det(A-AD =

-5-A

V3

1 4
2 I
I 5-2a
-3 0
0 V3
/3 -

Next, we replace the first row by the sum the first three rows and

replace the last row by the sum of the last three rows to obtain the

following interesting matrix.

-A
1

4
V3
-V3
0

-A
-2~
1
-V3
0

0

-2 0

1 . /3

-2 0

0 -3-A
V3 3
0 -2

P

& W O

=a|

If A were set equal to zero, the matrix A’, defined above, would have

two rows of zeros‘indicating that A=0 is an eigenvalue of A with

multiplicity 2 2.
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We pause for a moment in our pursuit of eigenvalues to find

the eigenvectors associated with A=0. To begin, A=0 is substituted
_)
into A’ so that the matrix equation A" X = 0, which has been written

X}

in augmented form, can be solved.

( 0 0 0 0 0 0] 0)
I -2 1 -4/3 0 V3| oo
4 I -5 0 V3 =43 ] o0
V3 -3 0 -3 3 0] 0
-3 0 /3 3 -6 3] 0

. 0 0 0 0 0 0| o),

Using Gaussian elimination, we reduce this system to a form that

can easily be solved.

(1 0 -1 0 0 0] 0)
0 1 -1 0 3 =3 ] o0
(3.1) 0 0 0 | -2 1 | o
0 0 0 0 0 0] o
0 0 0 0 0 0] o
.0 0 0 o0 0 o o)

From this augmented system of equations, with three rows of zeros,

we know three of the variables (x3. Yo and y3) can take on any

value, forcing the remaining three variable (x [+ Xpandy, ) to take
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on specific values given by the following equations, obtained from

the augmented matrix in Equation (3.1)..

x2=x3—\/§y2+\/§y3

(3.2)
Y =2Y,- Y,

Thus, by letting X3, Yo and y, take on specific values, we will have

three linearly independent eigenvectors. This means the eigenvalue
A=0 must have rﬁultiplicity three. '
Before we actually determine the values of the eigenvectors,
let us pause for a moment to see how we can rewrite the potential
energy function in a slightly different format which will help us to
determine its value under certain conditions. Recall, the potential
energy of the system is the sum of the potential energy of each

spring. Thus we have




s @

V=Via+Vo3+Vy3

_k{s 2 1.2 5.2 3
‘7{?"1*2"2*4"3*43'

3 3 3 V3 \/3

T2X X = DY YT RV YT XY T XY 5 X Y,

T X3 T XYzt T XYy

[ x )
(-5 1 4 /3 /3 o)l !
1 =2 1 -4/3 0 V3 || *2

=(xxxy)’.)’:-£ 4 s 0 V3 /3|1 .

172737172 3)8m ,\/E _,\/5 0 -3 3 0 yI
-3 0 43 3 -6 3 Y,

L 0 /3 /3 o0 3 —3J\y3)

We are able to rewrite the potential energy in this format because A
is a symmetric matrix. We define a function which can be rewritten
in this fashion as a quadratic form. Thus, Equation (3.3) is the

potential energy expressed as a quadratic form.

(3.3) | v(X) =X T=Kk AX
8m

Y
By the definition of an eigenvector X, which is associated

- -
with the eigenvalue A of the matrix A, we know that A X =A X If .
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we let the three eigenvectors, associated with the eigenvalue A=0, be

X. . X d X
, ,and ,
represented by A =0 A =0 s =0 then
1 2 3
- —>T -k - —)T -k - —-)T -k -
V(xxf )=XAJ=O m x7u1=o=xxj=o m xxxj;o:XAfo'S?f oxxfo-o

for j=1, 2 or 3. This tells us that the potential energy is zerao. We
now examine the physical interpretation of zero potential enefgy.

To have zero potential energy in the system, all the springs
must remain the same length L as in equilibrium. Thus, the only-
type of motion pbssible occurs when the entire system moves as a
unit. This is called a rigid motion. Since the spring-mass system
lies in the xy-plane, there are only two types of rigid motion:
translations (movement in the x- or y-direction only) and rotations
(the system pivots around its center of mass). These two motions
can also be combined.

-

If we consider the vector X, as a translation in the x-direction

only, then the variables X+ X and X3 mMust all change by the same

value and the variables Y Y2 and Y3 can not change. We can
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(¢)
c
c
express this vector as 0| If we let c=1, an eigenvector associated -
0
\ 0 ]
(1)
1
o l
with the eigenvalue A=0 is X » =0~ ol The graphical
=
0
\ 0 )

-3
interpretation of X \ can be seen in

[
Figure 3.5.

System Motion:

Translation along V2" 0 Resulting
the x-axis B %=1 gector

Center

of -
mass
Y3 =0 . yl =0
Resulting = { Resulting
=1 X =1
3 vector 1 vector

Figure 3.5
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If the translation is to the 'right (in the positive x-direction), then ¢>0

and if it is to the left (in the negative x-direction), then c<0.

Exercise 3.4

—_
Verify that X = iS a solution to
xl=0 0

The other type of translational motion we wish to consider
occurs when the system moves in the y-direction only. The

variables X[ X5 and X3 do not change while the variables Y- Yo and

y3 must all change by the same value. We can express this vector

as . If we let c=1, an eigenvector associated with the




(0 w
0
eigenvalue A=0 is XA = at The graphical interpretation of
5=
1
\ [ )
.—’
X can be seen in
A =0
2
Figure 3.6.
Resulting

System Motion: vector

Translation along V=1

the y-axis ;

xz =0
Resulting Center Resulting
vector of vector
V4=1 mass Y= 1
X3 =0 xl =0
Figure 3.6

If the translation is upward (in the positive y-direction), then ¢>0
and if the translation is downward (in the negative y-direction),

then c«<0.
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Exercise 3.5

(0 )

0
. 2 01. .
Verify that X r 0=| 1 is a solution to
.

1

1

=X — A X =0
( A_=) A =0 8m A =0
i J i
- -
Taking a careful look at the vectors X and X , we see

A= A_=0
lO 2

they are orthogonal. That is, their dot product is zero. Since the

eigenspace associated with the eigenvalue A=0 has dimension at

least three, we know there is a third linearly independent

eigenvector associated with the eigenvalue A=0. There are two
ways we could proceed at this point. The first is to use the three

equations in (3.2) and choose values for X3, Y5 and yj. For

example, let x3=0, y2=l and y3=0, then use the Gram-Schmidt
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-

process to find a vector which is orthogonal to both X A =0 and
=

-
X 0 The other way is to replace two of the rows of zeros in the

T
_.’
coefficient matrix in Equation (3.1) by the eigenvectors X A and

T

-
X A <0 The sotution to this new augmented matrix must satisfy all
-~

the equations which form the augmented matrix. Hence, the

solution to the augmented system will satisfy both X| +x2*x3=0 (from

g -
X A l=0) and y,+y,+y3=0 (from X A 0 ). A vector whose entries

satisfy both of these equations is orthogonal to the eigenvectors

1 2

- -
X and X . Also, from these two equations, we see in the

solution to the equations associated with the augmented matrix, the

X; values must sum to zero. Therefore, there is no translational

motion in the x-direction. Similarly, there is no translational motion
in the y-direction. Thus, the center of mass does not move. Since

this motion is a rigid motion (A=0) and the center of mass of the

system does not move, the rigid motion must be a rotation.




Reducing the following augmented matrix which is Equation(3.1)

_)
with two of its rows of zeros replaced by X \

we obtain

This augmented matrix above, can be interpreted as the following

equations.

\ O

OO - O - O

T

—
nd
a Xl

O oo oOoOo oo

T

63
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\/3
X173 73
X _2+/3
2573 Y3
V3
X3¥=73 Y3
Y IT7Y;,
y,=0
( _ 3}
23
_.)
If we let y3=3,then the resulting eigenvector is xx o= -V3
= -3
3
0
\ 3 )
_)

The graphical interpretation of X A can be seen in Figure 3.7.




System Motion:
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y,=0
D RO
Center
. of
o
x3 _ _ﬁ M x1 ~ ﬁ
Resulting o __ 3
vector 1 |

Figure 3.7

Exercise 3.6

’

V3 )

24/3

-3
-3

iS a solution to




-A
1

4
V3
-V3
0

Also, verify that X N

O O O O O —

-

-
is orthogonal to both X

-A

-2-A

1

-V 3

0
0

l .

~3-2

-3
-24/3
-3/3

0

=5

0

A
1
A
V3
Q

1
0
-9 -2
-V3
0
0

0
-24/3
V3
—3-2
—6-2)
1

—)
and XJL o
5

determinant. After several row operations, we obtain

-0 O O O O

So far we have found only three eigenvalues and their

associated eigenvectors. The remaining three eigenvalues can be
found using the determinant of the matrix A-Al which can be

reduced to |A| For convenience, |A| has been repeated below.

Using Gaussian elimination, we will reduce the matrix to a form
which will make the determinant easier to find. We will use only

row (or column) operations that do not change the value of the

66
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At this point, we could find the determinant using the cofactor
expansion method. However, if we do one column operation we will
greatly reduce the number of calculations needed. We add -2 times
the fifth column to the fourth column producing a new fourth

column.

| 1 1 0 0 0
0 -3-a 0 0 -v3 o0
0 -3 -9-2 -3v/3 2/3 o
0 -24/3 -4/3 -9-) 3 0
0 -3V3 0 0 -3-2 0
0 0 0 1 1

We are now ready to use the cofactor expansion method to find the
determinant of the matrix A’. Expanding by the first column we

have

-3-2 0 0 -3 o

» -3 -9-2 -33 243 0

A [=1(-1) -24/3 -3 -9-a 30
-3v/3 0 0 -3-2 0

0 0 1 1

Now, expand the resulting cofactor by the l;ifth column.and obtain

~3-2 0 0 -4/3
3 =3 -9-r -3v3 23
-24/3 -4/3  -9-a 3
-3v3 0 0 -3-2

A ]=1-1(
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Next, expand the resulting cofactor by the first row.and obtain

-9-2 -3/3 24/3

A=t 1f(=3-00"™ 3 g-a 3
0 0 -3-A

» -3 -9-A =33

+-V3(-D " |-2/3 -4/3 -9-2

~-3/3 0 0

Lo-nZo)l-3-n%4]

To find the eigenvalues of the original matrix, we set each factor

equal to zero and solve for A.

(-9-2)°-9=0 (=3-0%-9=0
-(—9-—1)2;—9 (_3_1)2=9
-9_A=%3 ~3-A=%3

A=-12 -6 A=-6"0

Since we have already determined that the eigenvalue A=0 has
multiplicity of at least three, the fact A=0 occurs above should be no
surprise. The remaining eigenvalues for the matrix A are A=-12 and

A=-6, the latter with multiplicity 2.
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To help us find the associated eigenvectors for the remaining

-
three eigenvalues, we recall the equation A X \ =A X , from the

-
definition of an eigenvector X ) and Equation 3.3

- - T -k - )
V(X N )= X » Bm A X . Which describes the potential energy as a

quadratic form using eigenvectors. As we saw earlier, these two

- - T -k -
equations can be combined as V(XA)= Xl 3m A X . We

observe that the only way this equation can equal zero is if A=0 or

= -
X A is the zero vector. However, since we are only looking at A=-12

. -
or A=-6, which are nonzero values, we must have that X \ be the

—)
zero vector in order for V(X A) to equal zero. Clearly this cannot

N .
happen because X \ is an eigenvector which by definition is never

equal to the zero vector. This indicates that the potential energy of
the system is not zero. Hence, the potential energy of each spring is
not zero, so the length of at least one of the springs must change.
Thus, we do not have arigid motion. Also, we recall that the

determinant of the matrix A-Al can be reduced by summing the first

three rows and the last three rows to give IAI
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-2 -A -2 0 0 0
| =2-2 I -3 0 V3
4 I -5-4 0 VERREEVEY —|a|
V3 -3 0 -3-A 3 o |
-3 0 V3 3 -6-A 3
0 0 0 -2 -2 -2

If we substitute in A=-12 or A=-6, the first row will contain constant

values for X{. X0, and X3 and the last row will contain constant
values for Yi-Yo and Y3- From an earlier discussion (following

Exercise 3.5) this indicates there is no translational inotion in either
the x- or y-directions, so we know the center of mass does not move.
Thus the motion associated with the last three eigenvectors can be
thought of as vibrations of the blocks (but not a translation or
rotation) with the center of mass remaining fixed.

First, we find the two linearly independent eigenvectors
associated with the eigenvalue A=-6. Since A=-6 has multiplicity
two, the solution space of the augmented matrix, (A=Al X 0 or
(A+61) X = 0 will have dimension four. That is, when the .
augmented system is reduced, we will have two rows of zeros.
Thus, four of the variables can be written in terms of two of the
other variables. These two variables can be assigned values which

will produce two linearly independent eigenvectors. If we let X5

and Yo be these two variables, then X1 Y X3 and Y3 can be written
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in terms of X5 and Yo One way to assign values to X5 and Y5 and be

assured of getting a linearly independent eigenvector, is to first let

x2=0 and y,=1,and then let x2=l and y2=0. Let us consider the

geometric interpretation of these cases.

CASE 1. x2=0 and y,=1

Since the center of mass for this configuration remains fixed, the Yo

component must be balanced by the sum of the Y| and the Y3
cdmponents. Because x2=0, we know the components X| and 'x3

must be equal in magnitude and of opposite sign. These components

can be seen in Figure 3.8.




System Motion: Resulting

Stationary Vibration vectoi'
1%

b

Center
of
mass _
Xy=-C
Resulting )
vector V3=~ % Vy=-
Figure 3.8

Letting c=1, one eigenvector associated with A=-6 is

=<l

1

0

|

L]
A =6 2 |

1

1

2

CASE 2. X,=1 and y,=0
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Since the center of mass does not move, the X5 component is

balanced by the sum of the Xy and X3 components. Because y2=0.
we know the components Y and Y3 must be equal in magnitude

and of opposite sign. These components can be seen in Figure 3.9.

System Motion: Vo= 0
Stationary Vibration B—zx -1 Resulting
2 vector
Center
of
' mass Resulting ¥,=¢
‘ W
1
X ==+ 1
3 2 - -
1772
Resulting ——c
vector V3=
Figure 3.9

Letting c=1, a second eigenvector associated with A=-6 is

N
e

=l
]
|

,
[
~




Exercise 3.7

-
Show that X N

Zero).

—
Therefore, { X

associated with the eigenvalue A=-6.

—>
and X

g

e

=

2
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are orthogonal (their dot product is

A =6
!

—)
X

A

2

} is a set of orthogonal eigenvectors

It remains for us to find the single eigenvector associated with

the eigenvalue A=-12. To do this we will substitute -12 for A in IAI

- =
and solve the matrix equation A' X = 0. When we do this, we get

the following augmented matrix.

This augmented matrix above, can be interpreted as the following

equations.

(

I
0
0
0

\ 0

-

O C O -~ O

O O - OO0

O -0 OO

O -~ OO OO0

el

o0 OO0

0

0)
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X, = —\/§y3
X2=0
X 5= 3y 3
Yi=Y;3
Y,=—2Y;
(/3
-0
_)
If we let y3=l. then the resulting eigenvector is X reat2 = '\/5
== l
-2
\ 1)
-y
The graphical interpretation of X can be seen in Figure 3.10.
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System Motion:
Stationary Vibration :
X,=0
2
Y= 2 v Resulting
vector

Y3= 1 Resulting

Resulting y,= !
vecto Center

vector

x3=\/§ mass x1=—-\/5

Figure 3.10

NARYAL (VEY(  1)(-12 (-3 )]
ﬂ 0W 2\/5W 0\ n 0
l 0 || -+/3 -1 || =122 A3 ,
Thus, | 0 | 3 —1/2 | : > IS an
0 1 0 1 0 -2
~\0)'\l],\ 3 )'\—1/2J|\ -1/ IJJ

orthogonal set of eigenvectors of A associated with the eigenvalues
0,0,0,-6,-6 and -12, respectively. We normalize these orthogonal

vectors to get the following orthonormal set of eigénvectors.
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(BY( o V(G (VY[ L
| o || e 7 14 ?
V3 0 V3 0 —-——714 0
3 3

\/14 14 l
\/3 0 _[3_ 7 - 1l44 2

U2 o= || vam || B

0 5 14 7 6

/3 Via _V3

0 3 0 7 0 3

VE) 1 V14 14 3
BECEEANERFAYEEPA Gl vl | Unle 2l AN

If we let the eigenvectors above form the columns of a matrix P,

. ) -1 R B _k )
then P is invertible and P AP=D, so P 4mAP = 4mD where D is a

diagonal matrix with the eigenvalues 0, 0, 0, -6, -6, and -12 as the

entries on the diagonal. Since our goal is to solve the differential

2 K - - -1 =
equation X =g A X.wewilllet U=P X, then apply Exercise
2.4 with n%6, where we have factored mout of the matrix A

K 2k -
instead of a‘ Thus PU =TnTP D U becomes

. @, (6) .. __k_[ m, 5@ (6) ]
P ul+P u2+...+P Ue=om P llu|+P 12u2+...+P xou()

where xl=xz=x3=o, JL4=A5=-6. and kl=-12. This equation can be

K
simplified by multiplying through by Im’ gathering terms and

moving everything to the left side.




. kS0 ] [(2)- k@ ]
[P u|—4mP llul+P u2 4mP lzuz +...

(6) . k_pl6) _a
+[P u6—4mP lﬁuﬁ]_o

Factoring out P( ! ). P(Z) ..... P(6), we have

2 k. & =
¥ X 2]13 +...+[u A U]P =0

- Kk (D r. k
[u - 2= u P +[u2- A, u
Since the columns of P are orthonormal eigenvectors of A, we know
they are linearly independent. Thus, we have a finite linear
combination of linearly independent vectors which equals zero, so

(1) P(Z), N p(2)

the coefficients of P must be zero. If we set each of

the coefficients in the above equation equal to zero, we have

. _L - . —_L
ul 4mll ul =0 ul-4m klul
- K _ . K
U2'4m KZUZ-O or UZ-_4n‘|l2U2
- k - k
Ue~Fm *Us=0 Us=Tm M6ls

Since kl =)»2=k3=0. k4=15=-6 and }‘6=' 12, these differential equations

becorme
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u=0 Y4 " 2m Y4
“ - 3k
u,=0 Us=~%m Ys
. - _ 3K
u,=0 Us="m Yg

These are all second order linear differential equations which can be

solved using basic techniques. (See Appendix A.) The solutions are

These solutions can be written as a matrix equation which can be
- -
substituted into X =P U.




- -
X=PU
/3 3 Ju S LY,
(—3‘ 0 -5 T NS -3 C“(+Cl2 )
—‘/3:3- 0 ‘/3—3 0 @- 0 || Cat*C2 )
RPN/ W Uit S R | It TR
_| 3 6 7 4 2 ‘/'3—( ”
0 é __; _‘/I_?_ _‘/;_'; % c4lcos( S sm( th .
3k 3k
0 _J§§_ a ﬁ 0 ’é cSlcos( /2 ) sm( /2"‘ )
{
J3 1 Ja  Jia J3 |lc cos( %‘t)+c sm( ?:]‘t
= - X o X2 X2 \Tel y
S [ 7 6

-
by the vector U. The components of the solution vector X are : .

TR 273 3176 326 tCaT 7 2m

Via 3k V14 3k
e 7 S'"( ’2_m"[)“C5| 14 COS( Zn")

Via . 3k ) | (/3k) 1..( 3k)
%5714 5'"( 2m Y761 7S \Wm Y~ C psin{m ¢

ey Bore, Be Ve VB V(3 )

2=C T3 WG T3 Oy T3 U ey G ;
Vi4 . ( 3k )
—052—7—sm -2"5[




X35¢u73 %273 %7 TCx76

o % sin ([ )-e M cos ( [35 )

csz\{?sm( —z%t)+cml§cos(‘/—3—n¥t)+c62%sin( ?Tlft)
y|=°2|\/T§'[+C22#"°315[ °3215 °4|'\{IT—4C°S(' 23_;‘)

21" 3 273 a7 2m 7 2m
V3 ( 3k ) V3 ( 3k )
—CGI °3—COS m t C()) Tsm m t
V3 V3 [ 1 V14 3Kk
Y3=Cy 3 e 3 vy gt ChL5-C0 COS( Ht)
-C —-——msin( /3—kt)—c “MCOS( -lk—t)
192 14 2m 5t 7 2m
V14 . 3K 3 ( 3k ) 3 . ( 3k
—CSZ = sm( —,ZE [)+C6l—6'COS —[TT( -O-C()2 ——6—-Sln m
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It is possible to determine the values of the cij provided we have

been given enough details about the system which we have
modeled. Since the values of m (the mass of the spring) and L (the
length of the spring in equilibrium) are given, and if we know the

value of each Cij' then we will be able to find the value for each X;

and y;ata given time.

We now want to apply the theory of the spring-mass system
which we have just studied to understand how this system models

the vibrations of a water or H,O molecule, as shown in Figure 3.11.

Oxygen

borV bond

O O

Hydrogen Hydrogen

Figure 3.11

Figure 3.1 has three springs, but the water molecule has only two
bonds. The third spring represents the repulsion force of the two
hydrogen atoms. A water molecule which lies in the xy-plane would
have a translational motion in both the x- and y-directions as

described in Figures 3.5 and 3.6. Also, the molecule would be able
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to rotate, as we saw in Figure 3.7. Moncrief and Jones (1977)

explain the three vibrational modes for HZO using Figure 3.12.

O O o)
7\ /7 N\ 7\
H H H H H H

@)

/ \ /o\H H‘,,,o\H
H H H

0] o) (0]
7\ /7 \ /N
H H H H H H

O @) O

7\ /
S

(@) (b) (c)

Figure 3.12

The vibration in Figure 3.12(a) is called a symmetric stretch Since
the bonds between the both hydrogen atoms and the oxygen atom
are stretching by the same amounts at the same time. We have
already considered this type of motion in Figure 3.8. In Figure
3.12(b) we see an asymmetric stretch which is due to the fact the
bonds between the hydrogen atoms and the oxygen atom are being
stretched by the same amount but not at the same time. Figure 3.9
describes this same mode of vibration in the closed spring-mass
system. The final mode of vibration is called symmetric bending

and is seen in Figure 3.12(c). This vibrational mode consists of the
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hydrogen-oxygen bonds remaining at the same length, but the two
hydrogen atoms vibrate by moving further apart then closer

together. We have already seen this in Figure 3.10.
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Appendix A: Review of Differential Equations

We will limit our discussion to second order linear differential
equations with constant coefficients. This appendiX is not meant to
replace a differential equation course, but only to show how to solve
a very select group of differential equations. The second order

linear differential equations which we want to solve are of the form

(A.1) X+mx=0,

where the coefficient of the x-term is a constant which we denote
by m. Any second order differential equation which can be pﬁt in
the form of Equation (A.1) is called a linear differential

equation. The differential equation X+ m sinx=0 is no longer
linear because sinx is a nonlinear function of x. The method used to
solve the differential equation (A.1) above, depends on the value of

m. We will consider three possible cases.

CASE 1. m=0

If m=0, then our second order differential equation becomes

pes]
1l
o

By the Fundamental Theorem of Calculus, if X=0, then xX=a, and

X=at+b.
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Conversely, if x=at +b, then differentiating this equation

with respect to time we have

dx .
—=a or X=a
dt .

Differentiating again, we obtain

2
d—)2(=0_ or X=0
dt

Therefore, we conclude that X=at + b is the solution to the

differential equation X=0

CASE 2. m«0

The differential equation X+ m x= 0 can be rearranged as
X=-—mX where -m is a positive number. Recall from calculus, that
the exponential function, when differentiated, yields a multiple of
itself. Thus, we want an exponential function which when
differentiated twice results in a positive multiple of itself. Let us
pause for a moment and consider two examples of exponential

functions.

2t 2t

X=e and x=e~

Taking the first derivative of these two function with respect to

time, we obtain
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x=2e% and x=-2e72t

After taking the second derivative, we have the following two

functions
%=4e?' and k=4e2t

If we substitute the values for X and x into the differential equation
X—-4x=0, we see that X= e?' and x=e"% are both solutions to the

same differential equation. Furthermore, any linear combination of

. 2t -2t . .
these two solutions such as x= cle +cze , is also a solution to

X+ mx =0 when m=-4. From this we conclude that

J-mt C-J/=mt . .
e +Cc_.e , is a solution, for all Cy and Cy.

X=C 2

CASE 3. m>0

The differential equation X+ mXx =0 can be rearranged as
X=-rmX where -m is a negative number. Recall from calculus, that
the cosine function, when differentiated twice yields a negative
multiple of itself. This is also true for the sine function. Let us
pause for a moment and consider two examples involving the cosine

and sine functions.

X=cos2Xx and XxX=sin2x
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Taking the first derivative of these two function with respect to

time, we obtain

=-2sin2x and x= 2cos2X.

After taking the second derivative, we have the following two

functions

X=—4cos 2x and X=-4sin2Xx.

If we substitute the values for X and x into the differential equation
X+ 4x=0, we see that x=cos2x and X=sin2x are both solutions to
the same differential equation. Furthermore, any linear combination

of these two solutions such as X= ¢, cos 2X+cC ,Sin 2X,isalsaa

solution to X+ mx =0 when m=4. From this we conclude that

X = clc_ost t+c,sin v/m t, is a solution, for all C| and Cy.

Just as it was shown in Case I, where m=0, every solution of X=0
must be in the form at+b. It can also be shown that every solution
for Cases 2 and 3, where m=0, must be in the forms we have

presented.




Appendix B: Solutions to Exercises
Exercise 2.1
2 u u -
- ! k(-3 O ) 1 K
= = - = — D U
The system U (‘32] m( 0 —1 [Uz] — can be

rewritten as the following two second order differential equations

. =3k
Uy=m Y
(B.1)
==k
U,=m Y,
‘ - X X -
.. - i kK [ -2 l) i K _
, th t = . == =—=A :
Similarly, the system X (xz} m( L — 2 [XZJ ™ X can

be rewritten as the following two second order differential

equations
- _ =2k K
xl=—-m—x|+7n-x2
(B.2)
v =Ky -2k
XEm X Tm Xp.

Each equation in {B.1) can be solved independently using only basic
techniques from differential equations. However, since each

equation in (B.2) is in terms of both variables x| and x5, neither

equation can be solved independently. Thus, it is much easier to
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solve the system of differential equations given by
g a - u -
U={ ! =_'<.( 3 0) =X pu.

a, m 0 -1/lu ) m

We have already found the eigenvalues of A to be ll =-3 and ).2=-l.

3k 1k
thus, " " m and ro="m - which are both greater than zero. From

this we see that the two second order differential equations in u,

and U2 are

s
o8]

3Ky = a Lk
ul+mul—0 and u2+mu2—0’

These are both second order linear differential equations which can

be solved using basic techniques. Their solutions are
_ [3k ) : ( [3k )
l-c“cos( m t)+c ,sin = U
_ [k ol [
U2—C21COS( o t)+c225m( 0 t).

The solution to the original system of differential equations
-

-
=—(l;-‘- A X is found by substituting the values for both the matrix P

- - -
and the vector U into the equation X =P U.

T e

3‘1

G Py g W g ey e



Muitiplying the matrices on the right side together and equating
components, we get the following solutions to the differential

equation that models the spring-mass system.

-y (S e gon (B O cyon (J e n

X, = c“co ( +c sm C,, COS t +C, sin =
_ /3k /3k)+ (/k) .(1_

X,= c“cos( snn c.,, COos t +C,,sin =

Exercise 2.3

Since we have n variables X Xg, o X WE have n equations of

motion which are

d[aT]__23v d[aT]__avV
t axl axl' dt a>‘<2 axz'

d[aT ]___aVv
tdu] 9x, X,

The easiest way to construct these equations is to find each
component. To find the left side of each of the equations of motion,

we first differentiate the equation for kinetic energy with respect to
)'(i (i=1,2,..,n).
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oT _ 1 : = m ¥
axl—2m[2x|+0+...+0] mx,
T _ 1L : s
—).(—2- 3 m[0+2x2+0+...+ O:I_mx2
aT

a% =%m[0+...+0+2)’<n]= mx

When we differentiate each of these with respect to time, we have

d [9T d . -
dt _]z'd_{[mxl]zmxl

dt ax'

79T V_drme Iz mas
dt axz]‘dt[mxz]‘"‘xz
AT |_dr ¢ 7=m%
dt[a)'(n]—dt[mx“] MXn

The right side of each of the equations of motion is
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oV __1 -
—axl- 2k|:2b“xl+2b12x2+...+2bmxn] k[b“xl+b Xy ¥ +b|nxn]
v__ 1 ——
——;;- 2k[2b12xl+2b22x2+...+2b2nxn]- k[blle+b Xyt +b2nxn]
av__ 1
-3 = 2k[2bmxl+2b2n > ..+2b X n]_ k[b X, +b 2nXat 4+b X n]

n

If we combine these components, the equations of motion become

-['T%-[—b X, —b X, ]
. K
X =t [~ 0% =P Xy =m0y %]
in=%[-bmx “b, X, =D X ]

X, =B, Tb, =D X
- - .

- % «| -6, -b . -b % A
_ _k 12 2 2 _k
K=| 2 |=% : " || "2 |=kBX

%, b, -0, =bo %,
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where B is an n x n symmetric matrix. Now we have an equation

that should look very familiar to us.
_’

X=77BX
Since B is a symmetric n x n matrix, there exists an orthogonal

-1
matrix P such that P BP=D. The matrix D is the diagonal matrix

whose entries along the main diagonal consist of the eigenvalues

A ... Ay Of B and the columns of P are the corresponding -

- - ‘
eigenvectors X NRRRE X N associated with the eigenvalues ll, Y

| - n
respectively. The following theory will be very similar to the: |
theory that we developed for the spring-mass system with two \
blocks, except the sizes of the matrices and vectors will be nx n and

n x 1, respectively. If we multiply both sides of this equation by P

. -1
and use the identity PP = ln' we get

-
-1z 1K o2 Kk -l ( —l)" k -1 (—1")
P X=P BX=xP B\PP x=ﬁ-(P ‘BP)P X/

. . . : = -1 .
To simplify this equation, we let U=P ~ X. To introduce the vector
- -

variable U, we substitute U =P : X into this equation. We then

-1 ] - 1™
substitute P BP =D and U=P l X into the right side to obtain

I -
U ""r‘:TD U. Now, multiplying both sides of this matrix equation by
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the matrix P, we get PU ="rlT(1'P D U. Rewriting the left side of
- K -
PU=-rPDU gives
Y
2 (0 @ ()| O (D @ (n)
PU =(P P ..P ) 2 =P GI+P 02+...+P 0,
Gn
where P(l) represents the ith column (i = 1, 2, ..., n) of the matrix P.

We rewrite the right side to obtain

(n

k A (2) (n)
'nTPD U=—nT[P Xlul+P k2u2+...+P Knun].

- K -
Thus, PU = ﬁP D U can be written as

. 1 2
P 0 +P G +..+P un=%[P()7L u|+P()k2u2+...+P(n)lnun]

K
We can simplify this equation by multiplying through by m

gathering terms, moving everything to the left side, and factoring

out P( l ). P(z), s P(n) from each quantity.
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Since the columns of P are orthogonal, we know they are linearly

. (1) _(2) (n)
independent, thus, the coefficients of the vectorsP , P, ..

t P
must be zero. If we set each of the coefficients in the above
equation equal to zero, we have

- K = - K = = _ K -
ul——n-l—llul-o, uz-mlzuz-o ,un—ml.nun =0

These are all second order linear differential equations which can be
solved using basic techniques. If we let r.=- -r%-li, where i= 2, ..,

n, then these equations become

u+r,u =0 U,+r,u,=0 .. ,un+rnun=0.

—.)
Using the following formulas, we can solve for the vector U. (Note:

o determine whether r; iS zero, negative or positive, substitute )‘i
. K

f == — .
into r, o ki )

lfri=0, then Ui=ci t+ci

l 2

rt -rt
Ifr <0, thenu =c. e! +c_e !
i i il i2

If ri>0, then ui=c“cos( /ri t)+ cizsin( /ri t).
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The solution to the original system of differential equations

o -

X =—,‘T<T B X is found by substituting the values for both the matrix P

— - -
and the vector U into the equation X =P U. .
Exercise 2.4 )

Since the spring-mass system lies free in the xy-plane, the entire
system can move vertically up or down, horizontally to the left or
right, or rotate. These types of motion are called rigid motions. The
system can also vibrate producing the motions that are described by

Figures 2.6 and 2.7.

(a) Suppose the three masses are moved to the right causing the
first three springs to stretch by different amounts and causing the

fourth spring to be compressed. This is depicted in Figure B.1.

m : m m
§ - VAAAANAA/ . ANAANAN -—-NW—%
Fx, %, x5

Figure B.1

First, we need the equation which describes the Kinetic energy of

the system in Figure B.1. .
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_1 [ 2 .2 . 2]
T= > M X +X+ X
The potential energy of the system is the sum of the potential
energies of each spring. Spring 1 is stretched from its equilibrium
position by the amount X|.so the potential energy for spring 1 is

V =

2 .
| kK x |- Spring 2 is stretched from its equilibrium position by

N~

2

the amount X|"X5, SO that V2= -'z-k(xl -xz) is the potential energy

for spring 2. Spring 3 is stretched from its equilibrium position by

the amount X5-X3, producing a potential energy of

2
\' k(xz—xJ for spring 3. Spring 4 is compressed from its

=1
372

equilibrium position by the amount X3. Thus, the potential energy

2 ,
KX 3 Therefore, the potential energy of the

. . |
for spring 4 is V4--2-

system is
V-iv-—‘-k 2 2 2 2
=& Vit [X|+(x|'xz) *(X27%y) +X3]

_k[ 2. 2 2 x]
= X‘+X2+X3'-X|X2—X23
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Since we have three variables X[ X5, and X3, we have three

equations of motion which are

2T J__9V oT __aV and -9 oT |___aV
ax axl' ax ax2 dt a>'<3 ax3

The easiest way to construct these equations is to find each
component. To find the left side of each of the equations of motion,
we first differentiate the equation for kinetic energy with respect to
X. (i=1,2,3).

—g),(ll=—é-m|:2>'(l+0+0]=m)'(l .
oT 1 -

a—xz- 5 [0+2x +0] mx

oT 1

—ax—3- —2-m[0+0+2x3]—mx

Now, differentiating each of these with respect to time, we have




o _ 01

dt | ox |~ dt |
d[ T 1_drv 1_
E[ 3%, =qc[m%,]=mx,
d [ 9T ] . -
dt | 3%, | f[mXy]=m%,

The right side of each of the equations of motion is

—aa—):/l=—k[2xl—x2]=k[-2xl+x2]

aV
—a——=—k[2x2—xl —x3]=k[xl —2x2+x3]

@ "2

aV

3%, =-k[2x5 =x, J=k[x, - 2x4]

If we equate these components, th: equations of motion become

X =%[ 2x, +X ]
. K

. XZ—?n-[XI—2x2+X3]
X3=%[x2—2x3]
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The equations of motion can be rewritten in matrix form, which is
the system of differential equations modeling the spring-mass

system in Figure B.1.

I 2o X _—

X = x2 = 1 -2 1 x2 =r_n_Ax )
v 0 1 =2 Z
X3 X3

(b) Since A is a symmetr.c matrix, all of its eigenvalues are real and
A is diagonalizable. We begin by finding the eigenvalues of the

matrix A.

det(A-AD=det| | -2-1 | =(x+2)(1+2-\/'2_)(l+2+\/3)‘
0 I -2-%

If we set det(A ~1l) equal to zero and solve for A, we find the

eigenvalues are A =-2, A,=-2*\/7and ).3=—2-\/? Thus, there exists

an invertible matrix P such that P! AP = D. D is the diagonal matrix -
whose entries along the main diagonal consist of the eigenvalues of
A and the columns of P are the corresponding eigenvectors. To find

P. we need to find the eigenvectors associated with A, =-2, Ay=-2+V 2
and l3=—2-\/ 2. For ll =-2 we have to reduce the following

augmented matrix ‘
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0 I =-2+2] o
101 ] o
toobtain | 0 I 0 | 0 | which yields the following equations: X =-
000]| 0
X3 and x,=0. If we let X, =-1, an eigenvector associated with 11,=-2

For A.z=—2+\l 2 we have to reduce the following augmented matrix.

~2-(-2+4/2) 1 0 | o
I -2-(-2++/2) i | o
0 | -2-(-2++42) ] o0
Lo -1] o0
toobtain | 0 -1 /2 | 0 [ which yields the following equations:
00 0 | o

X=X and x2=\/ 2x3. If we let x3=l, an eigenvector associated with

|
V2|
|

—)
A, =-2+V2is X =
! A 2=—2+J‘—2
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For 12=-2—\l 2 we have to reduce the following augmented matrix.

-2-(-2-+/2) 1 0 | o )
I -2-(-2-4/2) ! | o
0 1 -2-(-2-4/2) ] o
1 0 -1 | o
toobtain | 0 -1 -+/2 | 0 | which yields the following
00 o | o |

equations: X|=X3 and x2=-\l 2x3. If we let x3=l, an eigenvector

' -
associated with xl=-2- 21is X

1
-4/2 |. Using the theory ‘
1

x =2-/2 -

that we developed in Exercise 2.3, we know that we must first solve

- -
the differential equation P U = —":]—P D U, which leads to

[01 -%xl “l]P(l)’“[ﬂz"%}‘-z ”2]P(Z)+ [03'%;‘3 “3]p(3)= 6_

Since the columns of P are orthogonal, we know they are linearly
independent. Thus, the <oefficients of the vectors P\s((1), ), P\s((2),

3
) and P( ). must be zero. If we set each of the coefficients in the

above equation equal to zero, we have
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Substituting in the eigenvalues, we obtain

-—(—2+-\/_)u =0, 63—%(-2—‘\/2_)U3

l-—( 2)u =0, u2

After simplifying these equations they become

o2k oo (2-VR)k Q+v2)
”;*‘mu|‘0' u2+ m u2-0. u3+ m u3 -O‘

From these differential equations we observe that

cox -V '\/—)k LGV
- m

1= m 2= 3°
Since each r; (i=1, 2, 3) is greater than zero, the solutions to these

second order linear differential equations are

ul-c“cos( o U+, sin{ 5t

,

u2=c2|cos( (2- ;\n/—)k ) czzsin\ Q—_miaﬁt)
(

u3=c3|cos( -(—2—*'—?“/—&[)+c3zsin\ QLm‘/_El'i[)
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The solution to the original system of differential equations

2 -
= Tlr(T A X is found by substituting the values for both the matrix P

- - -
and the vector U into the equation X =P U,

- -
X=PU

( (Zk) (Zk) )
¢ cos(Jm t)+csinl /L

\/l -\/% c2lcos(,/(2 =)k | sm( (2- Pk )

1 1

N

l
0
1

( (2+f)k ) sin (2+}{1§)k )

\ C3'COS

Multiplying the matrices on the right side together and equating

components, we get the following solutions to the differential

equation which model the spring-mass system.

X|=-C COS( %T‘l( [) sm( %I‘: t

("
czlcos( @-v2)k t)+c,,sin .‘/ 2_:']/5)‘( t)
(

Joe,
(2+?r]/—2_)k ) Sm( (2+:n/§)k [)

3&




(Jex2k ), 2%25‘"( G-V |

Xx.=vV2c._. cos

2 21
2¢ cos( (2+\/—)k ) \/2_c3zsin( (—2—+-rﬁ\/—-2-—)—kt)

31

- [2k ) : ( [2 )
X3-C“COS( m t +Cl25|n m t

+c21cos( (2- r\n/_)k ) 22sin( LZ—_—;‘/—Q—KJ
+c3lcos( (2+\/_)k ) c325in( £gi%—g)—k—t)

(c) To describe the configurations in which the spring-mass system

vibrates, we need to write each u; in terms of the X;. This can be

. - - -1
done by using the matrix equation X=P U or U=P X. We first

find P and substitute it into the matrix equation.

(1 l
u 2 0 5\ X,
u, ol L ¥2Z 1|«
2171 4 4 4 2
Ys L 21 (X
\ 4 4 4 )

Multiplying these matrices together and equating components, we

get the following three equations.
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_ | 3
Y1972
y - X, + 2x2+x3
2 4
y - X, - 2x#2+x3
3 4

These three equations describe the relationships between the.

variables

X[+ X5 and X3. The three modes in which this spring-mass system

- x| + x3
vibrates are u, =

! _""'2—_' Wl[h U2=0 and U3=0.

X +V2X.+X

_ | 2 3 . _ _
u2- 3 with u, 0 and ug 0. and
xl—\/5x2+x3 . A
u3= 7 with ul=0 and u2=0.

- X, +X

In the first mode, u, = —L—3

=T with u2=0 and u3=0. Since

-X +X
—'2—3 represents how the distance between blocks one and

three is changing, the first mode of vibration describes how the




109
distance between the two blocks is changing. We visualize this by
cansidering a series of diagrams similar to those in Figure 2.6.
Recall, the banner is made of an elastic material and indicates the
distance between the two blocks. When this system vibrates, we
see the banner contracting and stretching with a frequency

associated with ll. This is indicated by the series of “snapshots” of

the spring-mass system in motion seen in Figure B.2.

7|///
NN

Figure B.2
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X, +V2 xX_+X

In the second mode, u,= | 3 23

with ul=0 and

u3=0. To visualize this mode of vibration, we consider a series of

diagrams similar to those in Figure 2.6. When this system vibrates,
we see the flag moving back and forth with a frequency associated

with }‘2' This is indicated by the series of “snapshots” of the spring-

mass system in motion as seen in Figure B.3.

%7

NN

L

NN

74

NN

Figure B.3
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xl—ﬁx +X

2 3

In the third mode, U,= 3

with Ul=0 and u2=0.
To visualize this mode of vibration, we consider a series of diagrams
similar to those in Figure 2.6. When this system vibrates, we see

the flag moving back and forth with a frequency associated with 13.

This is indicated by the series of “snapshots” of the spring-mass

system in motion, as seen in Figure B.4.

SRS ool S

%
A\

=
N a—ihn————F
\\\\ AAAANA —. ANAANAA ! vvvw——%

N
Ly
A\

|
.
>
"
|
"
|
L

Figure B.4
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Exercise 2.6

Since the spring-mass system lies in the xy-plane, the entire system
can move vertically up or down, horizontally to the left or right, or
rotate. Besides these rigid motions, the system can also vibrate

producing the motion that were described in Exercise 2.6.

Exercise 3.1

We write f(%) as a Taylor series expansion expanded about zero.

2

((f)er@+ SR L5 (L) +

We use f(%) which has been repeated below for convenience, to

find f(0), {'(0) and *(0).

N |—

({2l {510 oo )




113
Substituting these into the Taylor series expansion and simplifying,
we have

r(i) %(xl_xz)—‘ﬁ(yl“yz) 1

)= 1+ q

el

OV PR TS -
=l+5{x, =X, V3 Y, =Y, )T +higher power terms.

Execcise 3.2
Figure B.5 contains the coordinates of the blocks and the distance

formula for the spring from Figure 3.3.

2 [xz' %L +y2]
X2
2
Y3 where d=J[ 2—(—%+x3]]z+[(—\g—§-L+y2]—y3]
X
3

Figure B.S
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The potential energy of this spring is one half the spring constant k
times the square of the distance that the spring is stretched. The
displacement of the spring from its equilibrium position (the
distance that the spring is stretched) is ld-LI. Expressing the

potential energy of the spring in terms of ld-LI. we have

1 2
Vo, Ekld—Ll |

We want to rewrite V23 using the variables X9, Y9, X3 and Y3 To

do this, we must first simplify the expression for the distance d.
1

2

([ (o) (Fres )] ¢

~N

We can rewrite the quantity expressed by the square root using its
Taylor series expansion. The terms of higher powers have been

grouped together for convenience.
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d=L{l+ %[(XZ—X3)+\/§(y2_y3)] 1

o N +terms of higher powers}

This expression can be simplified by multiplying through by L and
then moving the L to the left side. The resulting quantity is what

we wanted to find.

L= 4flss ) VAo e rmso
d L—z[(x2 X4 +-\/§ y2 y3 + terms of higher powers

This quantity can now be substituted into the formula for the

potential energy V—23.

The Taylor series expansion for potential energy can not have
nonzero linear terms, since the system has an equilibrium
configuration. Also, we are considering only smaltl vibrations so we
ignore the terms of hi.gher powers. The formula for potential

energy V23, is
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2
RO
v23‘2{4[(x2 X3 +V/3(y,-v,
2 2 2 2
X X 3y 3y V3 \/'_
_k{X2 X3 2 3_1 V3 M3
‘2{4+4+ 7 T T2 XXyt XY T T X3y,
V3 V3 3 }
TT XYyt X3Y 3T Y, Y,
Exercise 3.3

Figure B.6 contains the coordinates of the blocks and the distance

formula for the spring from Figure 3.4.

Y3 (‘%’+X3, Y3] y1 (%""xll Yl)
b —— AV -

3 X

where d = \/[(% +x1] - (--12‘-+X3] ]2+[Y1 ‘Y;,]Z

Figure B.6

The potential energy of this spring is one half the spring constant k,
times the square of the distance that the spring is stretched. The

displacement of the spring from its equilibrium position (the
distance that the spring is stretched) is |d—Ll. Expressing the

potential energy of the spring in terms of Id—LI. we have
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1
Vi, Ekld L|

We want to rewrite V13 using the variables XY X3 and Y3- To

do this we must first simplify the expression for the distance d.

=L{.+%(xl_x3)+¢2[(x,-x3) +(v.—y3)2”

L

We can rewrite the quantity expressed by the square root using its
Taylor series expansion. The terms of higher powers have been

grouped together for convenience.

L{|+ %[2 ("l'xs)] 1

o Tt higher power terms }




118
This expression can be simplified by multiplying through by L and
then moving the L to the left side. The resulting quantity is what

we wanted to find.

d-L= (x [~ x3)+ higher power terms

This quantity can now be substituted into the formula for the

potential energy V 13

1 2
V|3-5k|d—L|

${(x, )

The Taylor series expansion for potential energy can not have any

2
+ higher power terms}

nonzero linear terms, since the system has an equilibrium
configuration. Also, we are considering only small vibrations so we
ignore the terms of higher powers. The formula for potential

energy V (3 is
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(0
0
tuting X 0 v(Xx X, _ =KaX. <o
Substituting X, o~ ;| 1Nt ( A = ]“ A =0 8m A=0
2 j !
1
\ 1)
gives
{(0\' (0\
0 0
vl % ]l=Cooor11n=Kal®
1 8m 1
i 1
A1) 1
[ -5 | 4 V3 /3 0)/0)
| S I /3 0 V3 ||lo

=§‘-ﬂ£}(0001|1) 4 L S0 V30

3
l 0 V3 V3 0 ..3 3\l

(0)
0
ﬁ(oooooo) ?=0
1
\ |/
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into

3.)
3
3
-3
0

(-
2

J

3

\

=0

-

Substituting X
l3

\

3
3

(—

2

3
-3

0

3 )

\

-k
— A
8m

(-3, /3, -3, -3, 0, 3)

3 )]
3

2

3

F(_

o

V3 -
| /3




-=—K(poo0000

8m

e 3

Now, show that X N

-

is orthogonal to both X

(/3 (1)
243 1

= —'\/E ° l
A =0 =3 0
0 0

L 3 ko)
(-3 ) (0)
24/3 0

=] = 3 ° 0
=0 =3 1
0 |

.3 ) L)
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Exercise 3.7
- -
To show that X \ and X 6 are orthogonal, we show their dot
: B 2
’ product is zero.
. (1Y (_1 \
0 2
-1 1
- - : 1
=" Xa 6| "3 |7 T2 |70
| 2 [ 1
1 0
"2 ) L-1 )

)



